
TaltOS

A component-based hard real-time
embedded operating system with run-time

component change ability.

Pre-planning

I. The problem situation

Programming embedded systems is a quite important work these days.

Every high-tech product contains some printed-circuit board with a processor
and memory. But only a few are capable to change his on-chip software, and
can do this only with special cables in offline mode, writing the whole
software again on the non-volatile memory.

If we imagine a sensor network in a development stage, the
reconfiguration of fifty boards and chips can take a while with one computer
and a serial cable. It would be much easier to upload a small base software,
after that we can runtime change the components with radio communication,
so we can program hundreds of boards in no time. The component ability
changes our boards to be a multi-functioned hardware. What do we need to
do that? A component-based hard real-time embedded operating system
with run-time component change ability.

upload to one board

than send to the ether

Component uploading/changing

II. Explication

Component-based: The object-oriented aspect is well utilized in PC
software development, but not in embedded systems. This software would
like to change this. Just look at how children build magnificent things from
small building blocks ☺.

Hard real-time: Is there something which is more important than this
in embedded systems?

Operating system: The base software, not much, just a couple of
functions, can be called by applications, and of course a task manager. What
other? We have components…

Run-time component change ability: Well, this is it. We don’t want to
gather every sensor; we don’t want to reset them to update the software on
it. Just send them the patches and updates through some communication.
Let the operating system do the rest.

III. Resources for the development

To develop this software I’m using a Philips chip called LPC2106. This is
an ARM-based microcontroller with 128 Kb non-volatile flash-memory and 64
Kb SRAM on a simple evaluation board built at my university (University of
Technology and Economy of Budapest). We plan to build a better board with
radio-communication, but it is not finished yet (maybe it won’t be L). The
chip contains a small built-in software I can upload a binary to the flash
memory with, and another for the in-application programming of the flash.
To compile the arm-assembly, C and C++ programs, I’m using the GNU gcc
cross compiler (release: 3.4.1).

IV. Principles

1. This should be a portable operating system, not only designed for
this Philips chip, so the assembly and chip/board specific code will be as
minimal as possible.

2. The first small program we have to upload manually has to be as
small as possible. Even the operating system should be a component too.

3. We only need the object-oriented aspect to use its component
ability, not for the inheritance ability.

4. The software is to satisfy the hard real-time expects in serious
situations, but the component changing, software uploading doesn’t have to
suit these exigencies. The reason is that the flash-writing is slow, and
because of the small space on it, maybe we have to use a complex algorithm
to place the components’ code.

5. No static variable. We don’t want to save data on the chip. (This can
be changed.)

6. After a component change, we wouldn’t like to reset the board. (This
is optional; I hope we can do without reset.)

V. First ideas

startup.asm

bootloader.c

- jump table and ISR assembly
- bss, data section init
- global ctors, dtors call (gcc)

- board/chip peripheries init
- ISR in C
- component check routine
- first component loader
- flash-memory writer
- run first component

H
ave to

 b
e u

p
lo

ad
ed

m

an
u
ally via U

A
R
T

Flash 128k

component public
functions’ relative
addresses

component code
and data (const.)
(can be multiple
classes)

Component(s)

comp ID and ptr.

comp ID and ptr.

comp ID and ptr.

comp ID and ptr.

Comp. table (CT)
given address

init function pointer
- initialize
- registration to CT
- add task to task
manager
- set ISR

factory functions

- allocate memory for
objects
- some more
initializing ☺
- return interface
pointer

always called after
the component
upload by the OS

In the RAM there are only stacks and
heaps for the tasks and for the
interrupt service routines (ISR).
We must reserve some place for the
flash writing operations.

About the boot-loader

The boot-loader contains only one assembly code for the startup for
the chip speci fic vector table and the bss, data initialization of the second
part, the real boot-loader. The startup must be in assembly, but the boot-
loader’s main part is in C.

This will initialize the needed peripheries for the upload (and maybe for
the OS), like the UART (radio), the system clock, the vectored interrupt table
and the timer. After this, the boot-loader will check if the flash contains any
executable components (it can be a previously uploaded TaltOS too.). If
there is something, it will run that, if not, he will expect a component from
UART (radio), put it on the flash and run it. From this part, the TaltOS (the
first uploaded component) will do the rest.

About the TaltOS
This operating system component should be small too. It contains a

task manager (preemptive or not, not decided yet) which manages and
schedules tasks. It also contains a component loader. The tasks can call
some specific functions, which add or remove tasks, maybe the OS will
handle the interrupt service routines too, and the tasks can only ask to
change the interrupt vector table.

About the components
The components (also the TaltOS) should be written in C++. There are

components which can act as a task, others will provide only functions. There
is a function that every component must contain. The init function, what the
TaltOS will execute after the upload. This can add tasks or initialize some
memory and constant data for himself. There can be factory functions which
create objects and return the dispointer. This part will be a bit like COM. The
init and the factory functions should be C functions (not in-class methods).
We have to find a solution to compile components. Because we won’t know
the memory address of the code before the uploading, so it has to contain
relative addresses.

About the component changing
This will be a privileged state, so no interrupts during this operation.

The TaltOS has to manage the flash writing; because of the small space
there will be a complex algorithm to range the components.

About the component table
It is not decided yet if the component would contain its ID and other

necessary information and after an unexpected reset the TaltOS would build
up the component table in the SRAM or there would be an exact place for the
component table in the flash memory for the information. The first solution is
to see on the figure.

About the components’ binary

This binary we upload will be a bit different. It is not specified yet what
information would it contain. There will be a relative vector table for sure.
During the project we have to specify this, too, some sort of file, which is
more than just an executable.

